Reference lists

BSH+22

Linda J. Bolay, Tobias Schmitt, Simon Hein, Omar S. Mendoza-Hernandez, Eiji Hosono, Daisuke Asakura, Koichi Kinoshita, Hirofumi Matsuda, Minoru Umeda, Yoshitsugu Sone, Arnulf Latz, and Birger Horstmann. Microstructure-resolved degradation simulation of lithium-ion batteries in space applications. Journal of Power Sources Advances, 14:100083, 2022. doi:10.1016/j.powera.2022.100083.

CPORegan+20

Chang-Hui Chen, Ferran Planella, Kieran O’Regan, Dominika Gastol, Dhammika Widanagea, and Emma Kendrick. Development of Experimental Techniques for Parameterization of Multi-scale Lithium-ion Battery Models. Journal of The Electrochemical Society, 167:080534, 2020. doi:10.1149/1945-7111/ab9050.

DFN93

Marc Doyle, Thomas F. Fuller, and John Newman. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. Journal of The Electrochemical Society, 140(6):1526–1533, June 1993. URL: http://dx.doi.org/10.1149/1.2221597, doi:10.1149/1.2221597.

GBK+23

Michael Robert Gerhardt, Alejandro O Barnett, Thulile Khoza, Patrick Fortin, Sara Andrenacci, Alaa Y Faid, Pål Emil England Karstensen, Svein Sunde, and Simon Clark. An open-source continuum model for anion-exchange membrane water electrolysis. In Electrochemical Society Meeting Abstracts 243, number 36, 2002–2002. The Electrochemical Society, Inc., 2023.

LZ13

Arnulf Latz and Jochen Zausch. Thermodynamic derivation of a butler–volmer model for intercalation in li-ion batteries. Electrochimica Acta, 110:358–362, nov 2013. doi:10.1016/j.electacta.2013.06.043.

LZ16

Arnulf Latz and Jochen Zausch. Multiscale modeling of lithium ion batteries: thermal aspects. jul 2016. doi:10.1515/nano.bjneah.6.102.

LZI11

Arnulf Latz, Jochen Zausch, and Oleg Iliev. Modeling of species and charge transport in li–ion batteries based on non-equilibrium thermodynamics. In Numerical Methods and Applications, pages 329–337. Springer Berlin Heidelberg, 2011. doi:10.1007/978-3-642-18466-6_39.

SMTD09

M. Safari, M. Morcrette, A. Teyssot, and C. Delacourt. Multimodal physics-based aging model for life prediction of li-ion batteries. Journal of The Electrochemical Society, 156(3):A145, 2009. doi:10.1149/1.3043429.

SGW19

Lauren N Stanislaw, Michael R Gerhardt, and Adam Z Weber. Modeling electrolyte composition effects on anion-exchange-membrane water electrolyzer performance. ECS Transactions, 92(8):767, 2019.

VST+19

Einar Vøllestad, Ragnar Strandbakke, Mateusz Tarach, David Catalán-Martínez, Marie-Laure Fontaine, Dustin Beeaff, Daniel R. Clark, Jose M. Serra, and Truls Norby. Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers. Nature Materials, 18(7):752–759, June 2019. doi:10.1038/s41563-019-0388-2.

XZW+15

Meng Xu, Zhuqian Zhang, Xia Wang, Li Jia, and Lixin Yang. A pseudo three-dimensional electrochemical–thermal model of a prismatic LiFePO4 battery during discharge process. Energy, 80:303–317, 2015. doi:10.1016/j.energy.2014.11.073.

ZW07a

Qi Zhang and Ralph E White. Comparison of approximate solution methods for the solid phase diffusion equation in a porous electrode model. Journal of power sources, 165(2):880–886, 2007. doi:10.1016/j.jpowsour.2006.12.056.

ZW07b

Qi Zhang and Ralph E. White. Comparison of approximate solution methods for the solid phase diffusion equation in a porous electrode model. Journal of Power Sources, 165(2):880–886, March 2007. URL: http://dx.doi.org/10.1016/j.jpowsour.2006.12.056, doi:10.1016/j.jpowsour.2006.12.056.